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A two-dimensional dynamical system with an angular coordinate, describing the operation of a two-position automatic steering 
device, the plane rotations of a spacecraft controlled by an angular orientation system, and a phase-lock control frequency system 
with a proportional-plus-integral filter is considered. An analogue of the Barbashin-Krasovskii theorem is obtained for differential 
inclusions with angular coordinates. This is used to prove the global stability of two-dimensional systems of angular orientation 
when there is no external force moment. It is shown that, when there is a constant external force moment in phase space, a region 
of initial conditions exists that corresponds to circular motions of a spacecraft. © 2001 Elsevier Science Ltd. All rights reserved. 

The classical example of a two-dimensional system for controlling angular orientation is the two- 
position automatic steering device [1]. In the traditionally assumed idealization, the equations of such 
a system have the form 

lO+(xO= M ( o ) + M  0` o = O + b O  (1) 

where 0 is the deviation of the vessel from the specified course, I is the moment of inertia of the vessel, 
a is the viscous friction coefficient, M(cr) is the moment of the forces produced by the steering device, 
M0 which here is assumed to be constant, and cr is the control signal fed to the steering-gear. 

In the two-position automatic steering device, M(cr) is a 2qr- periodic function, the graph of which is 
shown in Fig. 1. 

Here, M(-0) = - M ( +  0) and, at the discontinuity points cr = k~r, the values of the function M(tr) are 
the intervals [M(2kqr + 0), M(2kqr - 0)] or [M((2k + 1)~r - 90), M((2k + 1)It + 0)]. 
In this case, the solution of system (1) is defined as the solution of the differential inclusion [2] 

l O + o t O e M ( a ) + M  o, a = O + b O  

or in accordance with Filippov [3, 4]. Both these definitions for system (1) give identical solutions which 
coincide with the phase portraits considered earlier [1]. 

Equations (1) also describe the plane rotations of a spacecraft controlled by an angular orientation 
system [5]. Since the motion occurs in outer space, a = 0, and as regards the control moment M(o-) 
created by jet engines, it is assumed that there is an insensitivity zone I-A, A I. The graph M(cr) in this  
case is presented in Fig. 2 and differs in having insensitivity zones. 

Making the replacement -q = 6, we reduce system (1) to the form 

11 = - a r l  - f ( o ) ,  6 = ~'11 - b f ( o )  

(1 
a = 7 '  13 = I - ab,  f ( o )  = ( 9 ( a ) -  Y, ~ ( o )  = M ( a )  M o 

- ' - 'T  - ' v =  t 

(2) 

Thus, the parameters of system (2) satisfy the conditions a I> 0, b > 0, 13 = 1 - ab and ~/I> 0. We 
will also assume that 13 ~ 0. 

Note that, when a > 0 and A = 0, system (2) also describes the dynamics of phase synchronization 
systems with a proportional-plus-integral filter and the bang-bang characteristics of a phase-sensitive 
discriminator [6-8]. A detailed study of such as system showed [9] that a certain positive function 
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W(a, b) exists possessing the following property: when ~/< W(a, b), any solution of system (2) tends to 
a certain equilibrium state when ~/> W(a, b) and ~/< 1 both solutions approaching equilibrium states 
and solutions corresponding to circular motions exist (for an automatic steering device, this is infinite 
rotation of the vessel about the centre of gravity, and in such a case the control system is unable to 
damp the external force moment). Using computer calculations, the values of W(a, b) were calculated 
approximately [9]. 

Below it will be shown that an entirely different situation arises when a = 0. Here, when ~/= 0. all 
solutions approach a stationary set. However, for any ~/> 0 there are solutions corresponding to circular 
motions of the spacecraft. 

We will examine system (2) when A I> 0. 

Theorem 1. Let ~/= 0. Then, any solution of system (2) tends to a certain equilibrium state. 

Theorem 2. Let ~/> 0 and a = 0. Then a positive number e and a solution "q(t), tr(t) of system (2) 
exist such that 

11(0 >~ e, Vt >~ 0 (3) 

We recall that, it follows from inequality (3) that 0(t) ~> e > 0, Vt ~> 0. 
The proof of Theorem 1 will require the formulation of a Lyapunov-type lemma for the differential 

inclusions 

~ f (x ) ,  x ~ R n (4) 

where f(x) is a semicontinuous vector function which maps each point x E R ~ into a bounded closed 
convex set f(x). 

We recall the definitions of the terms used here [2]. 

Definition 1. We will say that the set U~(~) is the e-vicinity of the set 1~ if 

Ut(f~) = {x I y~tainf I x - y l <  e} 

where I- I is the Euclidean norm in R n. 

Definition 2. The functionf(x) will be called semicontinuous at the pointx if, for any e > 0, a number 
8(x, e) > 0 exists such that 

f ( y )  c Ut(f(x)) ,  Vy ~ Us(x ) 

Definition 3. The vector function x(t) is termed the solution of the differential inclusion (4), if it is 
absolutely continuous and, for t values for which a derivative x exists the following inclusion is satisfied 

~ f(x(O) 

For the differential inclusions (4) in the assumptions made here, the local theorem of the existence 
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of a solution of Cauchy's problem holds, as well as the following theorem on the extendibility of  the 
solutions: if, when t >I 0 for the solutions x(t),  the interval [0, 7) is the maximum interval of definition 
ofx(t), then a sequence tk E [0, T), tk ---> T exists when k ---> oo such that x(tk) ---> oo when k --> 0o. 

These theorems were proved earlier [2]. 
We will now assume that, for the linearly independent vectors da,..., din, the following equalities are 

satisfied 

f(x + a:) =f(x), Vx R. (5) 

An obvious property dearly follows from conditions (5). 
Proposition 1. Ifx(t) is the solution of inclusion (4), then, for any integer k, the sumx(t) + kd: is also 

the solution of inclusion (4). 
We will introduce the discrete group 

into consideration. Here, Z is a set of integers. 
Consider the factor group Rn/F, the elements of which are classes of residues Ix] ~ R~/I ". They are 

defined in the following way: Ix] = (x + u/u E F}. We will introduce the so-called plane metric 

p(Ix], IY]) = inf I z - v  I (6) 
ze[x],v ely] 

It follows from Proposition I that the metric space Rn/F thus introduced is the phase space for inclusion 
(4), i.e. it is divided into non-intersecting trajectories of inclusion (4). 

Definition 4. The point [p] E / ~ / F  is termed the to-limit point of the trajectory Ix(t)] ff a sequence 
tk --~ + oo exists such that 

[p] = lim [x(tk)] and k --~ oo 

Convergence here is understood in the sense of the metricp([x], [y]). 

L e m m a .  Suppose the o-limit set l'~ of the trajectory Ix(t)] is bounded. Then, through each to to-limit 
point of f t  at least one trajectory [v(t)] passes, determined when t ~ R 1 and consisting entirely of 
to-limit points of ft, i.e. 

[y(t)le ~ ,  V t • R  I 

The proof  of the lemma essentially repeats the proof  of Theorem 2.2.5 in [2], with the Euclidean 
metric replaced by metric (6). 

The following theorem is an extension of the well-known Barbashin-Krasovskii theorem [10] to differ- 
ential inclusions having the phase space Rn/I ". It extends analogous results formulated earlier [11, 12]. 

Theorem 3. Suppose a continuous function V(x): R n --> R 1 exists such that the following conditions 
are satisfied: 

1) V(x + el) = V(x), Vx e R", W e F; 

2) V(x) + ~ (a~x) 2 -~ = when I x I --'> oo; 
j=l 

3) for any solution x(t)  of inclusion (4), the function V(x(t))  is non-increasing; 
4) if V(x(t)  = V(x(O)), then x(t) is an equilibrium state. 
Then, as t ---> % any solution of inclusion (4) tends to a stationary set of  this inclusion. 
Note that the fact that the solution x(t)  tends to a stationary set A as t ~ oo means that 

lim inf I z - x( t)  I = 0 

Proof. According to condition 1 of the theorem, it is possible to define the function V([x]): R~/I" ---> 
R 1 in the following way: V([x]) = V(x). 
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From condition 2 of  the theorem it follows that V([x]) ---> + oo as [x] ---> oo. 
Using this property, we will prove that any trajectory Ix(t) in the space Rn/I" is bounded when t I> 0. 

Assuming the opposite, we obtain that an increasing sequence tk exists such that [x(tt)] ---> co as k ---> o0. 
It follows that V([x(tk)]) --~ +oo as k ---> oo. However, this contradicts condition 3 of the theorem. 

Thus, the trajectory Ix(t)] is bounded when t ~> 0 and, consequently, defined in [0, + oo). From the 
boundedness of the trajectory [x(t)] it follows that its to-limiting set fI is also bounded. Let [p] E f I .  
Then, using the lemma, we obtain that a trajectory Lv(t)] exists such that 

[y(0)] = [p], [y(t)] ~ ~ ,  Vt E R I 

Since, according to condition 3 of  the theorem. V([x(t)]) is a non-increasing function, and the bounded- 
ness in [0, +co) of  the function V([x(t)]) follows from the boundedness of [x(t)] and the continuity of  
V([x]), we have that the following limit exists 

lim V([x(t)])= V o 
I --1, -I-o* 

However,  then V(~(t)]) = V0, Vt ~ R 1. From this and from condition 4 of the theorem, it follows that 
y(t) = y(O), Vt E R 1. 

Thus, the to-limit set II consists of the states of equilibrium of inclusion (4). 
The statement of  the theorem also follows from this. 

Proof of Theorem 1. Consider the function 

o I +ab 
V(~, O) = ~2 + 2q~ g(o)do, q = (! - ab) - - ' ' ' ' ~  

o 

where g(cr) is a certain single-valued function, identical withf(cr) at the points where the functionf(cr) 
is single valued. For t values for which or(t) is a point wheref(cr) is single valued, the following relation 
holds 

b z 2b f(o(t))2 d v(rl(t)'°(t))=-2aCrl(t)- i-'s-~ f(o(t)) ) ( l_ab)2  (7) 

In sliding modes of system (2) we have (r(t) = or*, where or* is the point w h e r e f  (or) is single valued. 
Therefore, from the second equation of  system (2) we have 

I~rl(t) - /~ ( t )  = 0 (8) 

where ~(t) is a so-called extended function [2]. In this case, the first equation of system (2) will take 
the form "¢1 = -a-q - ~(t). Substituting into this equation the function ~(t) found from (8), and taking 
into account the identity or(t) = cr, we obtain that, in the sliding mode. 

d v(rl(t), o(t)) = -2(a + ~)ri(t)2 (9) 

- A  
r 

A 
m 

Fig. 3 
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From relations (7) and (9) it follows that, for the function V('q, or), condition 3 of Theorem 3 is satisfied. 
It is also clear that, when a > 0, the satisfaction of condition 4 of Theorem 3 follows from relations 

(7) and (9). When a = 0, in the bands {-q E R 1, or ~ (2k,a- - A, 2klr + A)} = 0 the relation V(~q(0, 
tr(t)) = const is satisfied. However, it is easy to show by direct integration of system (2) that whole 
trajectories positioned in these bands are only states of equilibrium. For any other trajectory, only some 
part of it can lie in the bands {'q ~ R 1, or E (2k~r - A, 2k~r + A)} (Fig. 3). From this, and from (7) and 
(9), it follows that condition 4 of Theorem 3 is satisfied when a = 0. Conditions 1 and 2 of the theorem 
are obviously satisfied by virtue of the condition ~/= 0. It is clear that in this case m = 1 and 

g(~)dc = 0, d I = 
o 2~ 

Thus, all the conditions of Theorem 3 are satisfied, and any solution of system (2) tends, as t ~ +% 
to a stationary set. 

Elementary analysis of the behaviour of trajectories in the vicinity of the stationary set of system (2) 
enables to make the somewhat stronger assertion that, when t --~ +~,  any solution tends to a certain 
equilibrium state. 

Proof of  Theorem 2. We will use the Chaplygin-Kamke comparison principle [12-14], by constructing 
the comparison system 

= -f, (0), 0 = u - bf, (0) 

(p(0)-y~ when 0 e (-It, - A) and 0 ~ (A, A) (10) 

f~ (0) = 0 when 0 ~ (-A, n) 

The positive number "YI E (0, ~/) will be determined later. We will find the periodic solution u0(O) 
of the first-order equation 

du - ~ ( 0 )  
dO u-hA(O) (11) 

equivalent to system (10), for which 

Uo(O) > b max fl (O) (12) 
0 

From the comparison principle we will then establish that any solution of system (2) with initial data 
~(0), or(0) satisfying the condition -q(0) > u0(or(0)) will possess the following property 

~(t) > uo(O(t)) (13) 

Relations (12) and (13) prove Theorem 2. 
We will now clarify the conditions for the solution u0(O) to exist. From the integration of Eq. (11) it 

is clear that 

/ 
- f l -  (~ - A) = ~ (Uo(-A) 2 -Uo(-n:) 2) - bf~- (Uo(-A) - Uo(-~x)) (14) 

-f:(n - A) = 2(Uo(n)2 - Uo(A) 2) - by: (u0 (~) - uo(A)) (15) 

where f i  is the value offl(O) in the interval (-'rr, -A), a n d ~  is the value offl(O) in the interval (A, ~'). 
Summing (14) and (15) and taking into account that uo(~) = Uo(-~r) and u0(-A) = uo(A), we obtain 

"h (n - A) = bq:(uo(X)-  Uo(A)) 

where q:  is the value of q~(O) in (--,n-, -A). 
From (15) and (16) we obtain the following equality for determining u0(~r) 

Uo(~)= b~P-fj + ~ ~'t(~:-~) t.bA+ 
Y I 2b~- 

(16) 
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It is clear that, for sufficiently small T1, the inequality u0(O) ~> u00r) > bf~ is satisfied. Inequality (12) 
follows from this. The theorem is proved. 

Various extensions of Theorems 1 and 2 both to wider classes of non-linearities and to multi- 
dimensional dynamical systems are possible within the framework of the frequency methods described 
in [8, 12, 15]. 
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